Формула числа сочетаний

Лучшее спасибо - порекомендовать эту страницу

Определение числа сочетаний

Пусть имеется $n$ различных объектов и требуется найти число сочетаний из $n$ объектов по $k$. Будем выбирать комбинации из $k$ объектов всеми возможными способами, при этом будем обращать внимание на разный состав комбинаций, но не порядок (он тут не важен, в отличие от размещений).

Например, есть три ($n=3$) объекта {1,2,3}, составляем сочетания по $k=2$ объекта в каждом. Тогда выборки {1,2} и {2,1} - это одно и то же сочетание (так как комбинации отличаются лишь порядком). А всего различных сочетаний из 3 объектов по 2 будет три: {1,2}, {1,3}, {2,3}.

число сочетаний из 4 по 2

На картинке наглядно проиллюстрировано получение всех возможных сочетаний из 4 различных объектов по 2 (их будет 6, см. калькулятор сочетаний ниже, который даст формулу расчета).

Общая формула, которая позволяет найти число сочетаний из $n$ объектов по $k$ имеет вид:

$$C_n^k=\frac{n!}{(n-k)!\cdot k!}.$$

Чаще всего сочетания используются в комбинаторных задачах и задачах на расчет вероятности по формуле классической вероятности (см. теорию и примеры).

Смотрите также другие онлайн-калькуляторы

Найти сочетания из n по k

Чтобы вычислить число сочетаний $C_n^k$ онлайн, используйте калькулятор ниже.


Видеоролик о сочетаниях

Не все понятно? Посмотрите наш видеообзор для формулы сочетаний: как использовать Excel для нахождения числа сочетаний, как решать типовые задачи и использовать онлайн-калькулятор.

Расчетный файл из видео можно бесплатно скачать


Спасибо за ваши закладки и рекомендации

Полезные ссылки

Решебник по ТВ

Решебник с задачами по комбинаторике и теории вероятностей: