ВАРИАНТ 5

Для изготовления различных изделий A, B, C предприятие использует 3 различных вида сырья. Используя данные таблицы:

Вид сырья	Нормы затрат сырья			Кол-во сырья
	A	В		
I	18	15	12	540
II	6	4	8	240
III	5	3	3	210
Прибыль	9	10	16	

- 1. Определите оптимальный план выпуска изделий из условия максимизации прибыли.
- 2. Определите статус каждого ресурса.
- 3. Определите ценность каждого ресурса и его приоритет при решении задачи увеличения запаса ресурсов.
- 4. Определите максимальный интервал изменения запасов ресурса I, в пределах которого текущее решение остается допустимым.
- 5. Производство какой продукции нерентабельно?
- 6. На сколько можно снизить запас каждого из ресурсов, чтобы это не привело к уменьшению прибыли?
- 7. Определите изменения величины прибыли при увеличении второго вида сырья на 10 ед.
- 8. Определите оптимальное решение задачи для случая, когда вектор ресурсов задан в виде \bar{b} =(400, 240, 210).

Решение.

1. Определите оптимальный план выпуска изделий из условия максимизации прибыли.

Составим математическую модель задачи по таблице данных:

Вид сырья	Нормы затрат сырья			Кол-во сырья
	A	В	C	
I	18	15	12	540
II	6	4	8	240

III	5	3	3	210
Прибыль	9	10	16	

Пусть предприятие производит x_1, x_2, x_3 единиц продукции вида A, B и C соответственно.

Тогда задача заключается в следующем:

Максимизировать прибыль предприятия

$$F = 9x_1 + 10x_2 + 16x_3 \rightarrow \text{max}$$
,

При ограничениях на ресурсы трех видов:

$$\begin{cases} 18x_1 + 15x_2 + 12x_3 \le 540, \\ 6x_1 + 4x_2 + 8x_3 \le 240, \\ 5x_1 + 3x_2 + 3x_3 \le 210, \\ x_1, x_2, x_3 \ge 0. \end{cases}$$

Решим задачу симплекс-методом.

Приведем задачу к каноническому виду, вводя дополнительные неотрицательные переменные:

$$F = 9x_1 + 10x_2 + 16x_3 \rightarrow \max,$$

$$\begin{cases} 18x_1 + 15x_2 + 12x_3 + x_4 = 540, \\ 6x_1 + 4x_2 + 8x_3 + x_5 = 240, \\ 5x_1 + 3x_2 + 3x_3 + x_6 = 210, \end{cases}$$

$$x_i \ge 0, i = \overline{1, 6}.$$

Начальный план X = (0,0,0,540,240,210). Составляем первую симплекс-таблицу по задаче, записанной выше:

Базис	План	x 1	х2	х3	х4	х5	х6
x4	540	18	15	12	1	0	0
x5	240	6	4	8	0	1	0
х6	210	5	3	3	0	0	1
F	0	-9	-10	-16	0	0	0

В последней оценочной строке есть отрицательные оценки, поэтому нужно делать шаг симплекс-метода. Выбираем столбец с наименьшей оценкой (оценка -16, столбец x3), а затем разрешающий элемент — по наименьшему отношению свободных членов (столбец План) к положительным коэффициентам столбца (строка x5). Результат шага запишем в таблицу (разрешающий элемент будем выделять серым).

Базис	План	x1	x2	х3	х4	х5	х6
x4	180	9	9	0	1	-3/2	0
х3	30	3/4	1/2	1	0	1/8	0
x6	120	11/4	3/2	0	0	-3/8	1
F	480	3	-2	0	0	2	0

В последней оценочной строке есть отрицательные оценки, поэтому нужно делать шаг симплекс-метода. Выбираем столбец с наименьшей оценкой (оценка -2, столбец x2), а затем разрешающий элемент — по наименьшему отношению свободных членов к

положительным коэффициентам столбца (строка x4). Результат шага запишем в таблицу (разрешающий элемент будем выделять серым).

Базис	План	x 1	х2	х3	х4	x5	х6
x2	20	1	1	0	1/9	-1/6	0
х3	20	1/4	0	1	-1/18	5/24	0
x6	90	5/4	0	0	-1/6	-1/8	1
F	520	5	0	0	2/9	5/3	0

В последней строке нет отрицательных оценок, план найден:

$$x_1 = 0$$
, $x_2 = 20$, $x_3 = 20$, $F_{\text{max}} = 520$.

Таким образом, необходимо производить по изделий вида В и вида С (изделия вида А не производить вообще), при этом прибыль будет максимальна и составит 520.

2. Определите статус каждого ресурса.

Подставим оптимальный план в систему ограничений:

$$\begin{cases} 18 \cdot 0 + 15 \cdot 20 + 12 \cdot 20 = 540 \le 540, \\ 6 \cdot 0 + 4 \cdot 20 + 8 \cdot 20 = 240 \le 240, \\ 5 \cdot 0 + 3 \cdot 20 + 3 \cdot 20 = 120 \le 210. \end{cases}$$

Получаем, что первые два ограничения выполняются как равенства, значит, ресурсы первого и второго вида полностью использованы, являются дефицитными. В третьем ограничении получаем 120 < 210, то есть данный ресурс использован не полностью, есть избыток в размере 90 единиц, ресурс не дефицитный.

3. Определите ценность каждого ресурса и его приоритет при решении задачи увеличения запаса ресурсов.

В строке F оптимального плана в столбцах дополнительных переменных получаем:

Базис	План	x1	x2	х3	x4	x5	x6
x2	20	1	1	0	1/9	-1/6	0
х3	20	1/4	0	1	-1/18	5/24	0
x6	90	5/4	0	0	-1/6	-1/8	1
F	520	5	0	0	2/9	5/3	0

Двойственные оценки: $y^* = (2/9, 5/3, 0)$.

Двойственные оценки определяют дефицитность (ценность) сырья. Так как y_1^* , $y_2^* > 0$, то, согласно второй теореме двойственности сырье и 1-го и 2-го типа полностью используется в оптимальном плане и является дефицитным сырьем. Так как $y_3^* = 0$, сырье третьего вида есть в избытке, не дефицитное.

Кроме того, значения двойственных оценок показывают, насколько возрастает доход предприятия при увеличении дефицитного сырья на единицу (соответственно, на 2/9 и 5/3).

Таким образом, при решении задачи об увеличении запасов ресурсов в первую очередь надо увеличивать запасы ресурса второго вида, а потом уже ресурса первого вида.

4. Определите максимальный интервал изменения запасов ресурса I, в пределах которого текущее решение остается допустимым.

Определим максимальный интервал изменения запасов первого вида сырья, в пределах которого структура оптимального плана, т.е. номенклатура выпуска, не изменится. Другими словами, проведем анализ устойчивости двойственных оценок. Предельные изменения найдем из двойного неравенства:

$$\max_{k_{ij}>0}(-x_{j}^{*}/k_{ij}) \leq \Delta b_{i} \leq \min_{k_{ij}<0}(-x_{j}^{*}/k_{ij})$$

где Δb_i - величина изменения i -го типа сырья,

 k_{ij} – коэффициенты структурных сдвигов.

Для первого типа сырья имеем:

Базис	План	x 1	х2	х3	х4	x5	х6
x2	20	1	1	0	1/9	-1/6	0
x3	20	1/4	0	1	-1/18	5/24	0
х6	90	5/4	0	0	-1/6	-1/8	1
F	520	5	0	0	2/9	5/3	0

$$k_{12} = 1/9$$
, $k_{13} = -1/18$, $k_{16} = -1/6$.

$$\max_{k_{1j}>0} \left(-\frac{20}{1/9}\right) \le \Delta b_1 \le \min_{k_{1j}<0} \left(\frac{20}{1/18}; \frac{90}{1/6}\right),$$

$$-180 \le \Delta b_1 \le 360.$$

Таким образом, интервал устойчивости двойственной оценки $[b_1-180,b_1+360]=[540-180,540+360]=[360,900]$.

5. Производство какой продукции нерентабельно?

Согласно оптимальному решению, нерентабельно производство продукции первого вида (изделия вида A), в оптимальном плане данное изделие отсутствует ($x_1 = 0$).

6. На сколько можно снизить запас каждого из ресурсов, чтобы это не привело к уменьшению прибыли?

Запасы первого и второго ресурса снизить нельзя, они используются в плане полностью. Запас третьего ресурса можно уменьшить на 90 единиц. При этом план и прибыль останутся прежними (не уменьшатся).

7. Определите изменения величины прибыли при увеличении второго вида сырья на 10 ед.

Определим максимальный интервал изменения запасов первого вида сырья, в пределах которого структура оптимального плана, т.е. номенклатура выпуска, не изменится.. Предельные изменения найдем из двойного неравенства:

$$\max_{k_{ij}>0}(-x_{j}^{*}/k_{ij}) \leq \Delta b_{i} \leq \min_{k_{ij}<0}(-x_{j}^{*}/k_{ij})$$

где Δb_i - величина изменения i -го типа сырья,

 k_{ij} – коэффициенты структурных сдвигов.

Для второго типа сырья имеем:

Базис	План	x 1	х2	х3	x4	х5	х6
x2	20	1	1	0	1/9	-1/6	0
х3	20	1/4	0	1	-1/18	5/24	0
x6	90	5/4	0	0	-1/6	-1/8	1
F	520	5	0	0	2/9	5/3	0

$$k_{22} = -1/6$$
, $k_{23} = 5/24$, $k_{26} = -1/8$.

$$\max_{k_{2j}>0} \left(-\frac{20}{5/24} \right) \le \Delta b_2 \le \min_{k_{2j}<0} \left(\frac{20}{1/6}; \frac{90}{1/8} \right),$$

-96 \le \Delta b_2 \le 120.

Таким образом, интервал устойчивости двойственной оценки $[b_2 - 96, b_2 + 120]$.

Поскольку увеличение запаса ресурса второго вида на 10 единиц ($\Delta b_2 = 10$) попадает в интервал $-96 \le \Delta b_2 \le 120$, структура оптимального плана не изменится. Найдем новый оптимальный план:

Базис	План	x5	Изменение	Новый план
x2	20,00	- 1/6	-1 2/3	18,33
х3	20,00	5/24	2 1/12	22,08
x6	90,00	- 1/8	-1 1/4	88,75
F	520,00	1 2/3	16 2/3	536,67

Таким образом, в результате увеличения количества дефицитного ресурса второго вида на 10 единиц, производство изделий В уменьшится до 18,33 единиц, изделий вида С увеличится до 22,08 единиц. Суммарная прибыль предприятия увеличится на 16 2/3 и составит 536,67.

8. Определите оптимальное решение задачи для случая, когда вектор ресурсов задан в виде \bar{b} =(400, 240, 210).

В данном случае количество сырья первого вида было уменьшено на 540-400=140 единиц. Так как уменьшение запаса ресурса первого вида на 140 единиц ($\Delta b_{\rm l}=-140$) попадает в интервал $-180 \le \Delta b_{\rm l} \le 360$, структура оптимального плана не изменится. Найдем новый оптимальный план:

Базис	План	x4	Изменение	Новый план
x2	20,00	1/9	-15 5/9	4,44
х3	20,00	- 1/18	7 7/9	27,78
х6	90,00	- 1/6	23 1/3	113,33
F	520,00	2/9	-31 1/9	488,89

Таким образом, в результате уменьшения количества дефицитного ресурса первого вида на 140 единиц, производство изделий В уменьшится до 4,44 единиц, изделий вида С увеличится до 27,78 единиц. Суммарная прибыль предприятия уменьшится на 31 1/9 и составит 488,89.