Решение контрольной работы

Задание 1. Линейное программирование. Составление оптимального плана.

На предприятии «Старт» организуется побочный цех для использования оставшихся от основного производства материалов.

Цех может освоить выпуск продукции двух видов: дверей и стульев. Эти виды продукции могут производиться в любых соотношениях (сбыт обеспечен), но количество рабочего времени, а также ресурсы основных материалов ограничены пределами, заданы в таблице.

Запланировать цеху ежемесячный план выпуска продукции, обеспечив при этом получение наибольшей прибыли.

Виды продукции	Нормы затрат	Прибыль на		
	Рабочее время, чел. ч	Древесина, м ³	Стекло, м ²	единицу продукции, руб.
Стулья	4,6	0,015	_	30
Двери	2	0,03	1	20
Имеющийся объем ресурсов	260	12	20	_

Решение.

Обозначим:

 x_1 — количество изготовленных стульев;

 x_2 – количество изготовленных дверей.

Целевая функция — прибыль предприятия. Она должна принимать максимальное значение $F = 30x_1 + 20x_2 \rightarrow \max$

при условии

 $x_1, x_2 \ge 0;$

 x_1, x_2 – целые

и следующих ограничениях:

Ограничения по трудовым ресурсам:

$$4.6x_1 + 2x_2 \le 260$$

Ограничения по материальным ресурсам:

 $0.015x_1 + 0.03x_2 \le 12 -$ расход древесины

 $x_2 \le 20$ — расход стекла

Таким образом, имеем следующую задачу целочисленного линейного программирования:

$$F = 30x_1 + 20x_2 \rightarrow \max$$

$$\begin{cases} 4,6x_1 + 2x_2 & \leq 260 \\ 0,015x_1 + 0,03x_2 & \leq 12 \\ x_2 & \leq 20 \end{cases}$$

$$x_1, x_2 \geq 0;$$

$$x_1, x_2 - yeлыe$$

Решение задачи графическим методом.

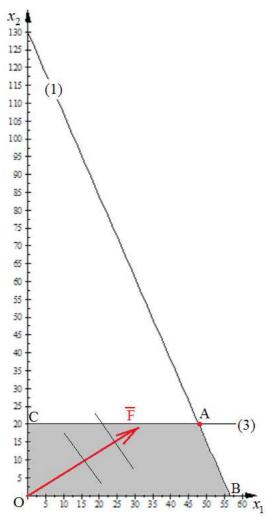
Строим в 1-ой координатной четверти прямые:

(1)
$$4,6x_1 + 2x_2 = 260$$

(2) $0,015x_1 + 0,03x_2 = 12$
(3) $x_2 = 20$

Получаем четырёхугольник ABOC допустимых значений. Прямая (2) проходит гораздо выше четырёхугольника ABOC и на область допустимых решений не влияет, поэтому на чертеже она не изображена.

Строим вектор \overline{F} с координатами (30;20), равными коэффициентам целевой функции.


Двигаем прямую, перпендикулярную вектору \overline{F} . Последняя вершина, в которой прямая пересекает область ограничений, — это точка A, которая является точкой пересечения прямых (1) и (3).

Находим координаты точки A, подставляя значение $x_2 = 20$ в 1-е уравнение:

$$4,6x_1 + 2 \cdot 20 = 260;$$

$$4,6x_1 = 260 - 40;$$

$$x_1 = \frac{220}{4.6} \approx 47.8.$$

Координаты точки А получились нецелыми. Чтобы не выйти из области допустимых значений возьмём ближайшие целые, которые не превышают полученные значения: $x_1 = 47$; $x_2 = 20$.

По графику видно, что эта точка с целыми координатами дальше по направлению возрастания целевой функции, чем ближайшая к ней вершина четырёхугольника точка В. Следовательно, значения $x_1 = 47$; $x_2 = 20$ будут давать максимум целевой функции. Значение целевой функции при этих значениях равно $F(47, 20) = 30\cdot47 + 20\cdot20 = 1810$.

Следовательно, оптимальный план $X^*(47, 20)$. Это означает, что предприятие должно выпускать 47 стульев и 20 дверей. При этом прибыль будет максимальной: $F_{\text{max}} = 1810$.

Контрольная работа по МОР выполнена на сайте www.matburo.ru Переходите на сайт, смотрите больше примеров или закажите свою работу ©МатБіоро. Решение задач по математике, экономике, программированию

Динамическое программирование. Оптимальное распределение ресурсов между филиалами предприятия

Предприятие планирует открыть филиалы в Михайловке, Урюпинске и Котельниково, для чего выделяются средства в размере 5 млн. руб.

По расчетам экономистов, каждый филиал при инвестировании в него x млн. руб. приносит прибыль $\varphi_i(x)$ млн. руб. Эти данные приведены в таблице.

Необходимо выбрать оптимальное распределение выделенных средств между филиалами, обеспечивающее максимальную прибыльность всего проекта.

Вложенные	Филиал				
средства,	Михайловка	Урюпинск	Котельниково		
x млн руб.	$\varphi_1(x)$	$\varphi_2(x)$	$\varphi_3(x)$		
1	0,50	0,40	0,20		
2	0,60	0,45	0,40		
3	0,80	0,55	0,50		
4	0,90	0,60	0,70		
5	1,00	0,65	0,90		

Решение.

Обозначим филиалы в Михайловке, Урюпинске и Котельниково предприятиями № 1, 2 и 3, соответственно.

Обозначим x_k количество средств, выделенных k-тому предприятию.

Начинаем рассматривать распределение средств с последнего, 3-го предприятия.

Для нахождения решения составляем таблицу, где обозначим:

k – номер предприятия, k = 1,2,3;

 \mathcal{X}_k — средства, отданные k –тому предприятию;

 S_k — средства, оставшиеся после k -того шага, т.е. после распределения средств между предприятиями 3,...,k;

 $f_k(x_k)$ – прибыль, полученная от вложения в k –тое предприятие средств x_k ;

 $Z_k *(s_{k-1})$ – условная оптимальная прибыль, полученная на k -том шага после распределения средств, оставшихся после предыдущих шагов.

 $x_k^*(s_{k-1})$ — распределённые на k -том шаге средства, при которых прибыль $Z_k^*(s_{k-1})$ получается максимальной.

	x_k –		k = 2			k = 1		
s_{k-1} средства, выделенные k -му пр-тию	s_k	$f_2(x_2) + Z_3*(s_2)$	$Z_2^*(s_1)$	$x_2^*(s_1)$	$f_1(x_1) + \mathbb{Z}_2^*(s_1)$	$Z_1^*(s_0)$	$x_1^*(s_0)$	
0	0	0	0	0	0	0	0	0
1	0	1	0,00+0,20=0,20			0,00+0,40=0,40		
	1	0	0,40+0,00=0,40	0,40	1	0,50+0,00=0,50	0,50	1
2	0	2	0,00+0,40=0,40			0,00+0,60=0,60		
	1	1	0,40+0,20=0,60	0,60	1	0,50+0,40=0,90	0,90	1
	2	0	0,45+0,00=0,45			0,60+0,00=0,60		
3	0	3	0,00+0,50=0,50			0,00+0,80=0,80		
	1	2	0,40+0,40=0,80	0,80	1	0,50+0,60=1,10	1,10	1
	2	1	0,45+0,20=0,65			0,60+0,40=1,00		
	3	0	0,55+0,00=0,55			0,80+0,00=0,80		
	0	4	0,00+0,70=0,70			0,00+0,90=0,90		
	1	3	0,40+0,50=0,90	0,90	1	0,50+0,80=1,30	1,30	1
4	2	2	0,45+0,40=0,85			0,60+0,60=1,20		
	3	1	0,55+0,20=0,75			0,80+0,40=1,20		
	4	0	0,60+0,00=0,60			0,90+0,00=0,90		
	0	5	0,00+0,90=0,90			0,00+1,10=1,10		
	1	4	0,40+0,70=1,10	1,10	1	0,50+0,90=1,40	1,40	1
5	2	3	0,45+0,50=0,95			0,60+0,80=1,40	1,40	2
	3	2	0,55+0,40=0,95			0,80+0,60=1,40	1,40	3
	4	1	0,60+0,20=0,80			0,90+0,40=1,30		
	5	0	0,65+0,00=0,65			1,00+0,00=1,00		

Максимальное значение прибыли равно 1,40 млн. руб.

Эту прибыль можно получить при трёх различных распределениях данных ресурсов между предприятиями, которые выделены в таблице: Вариант 1.

1-му филиалу в Михайловке и 2-му филиалу в Урюпинске выделить по 1 млн. руб., а 3-му филиалу в Котельниково выделить 3 млн. руб.

В этом случае прибыль складывается следующим образом:

0,50+0,40+0,50=1,40 млн. руб.

Вариант 2.

1-му филиалу в Михайловке и 3-му филиалу в Котельниково выделить средства по 2 млн. руб., 2-му филиалу в Урюпинске выделить 1 млн. руб.

В этом случае прибыль складывается следующим образом: 0,60+0+0,40+0,40=1,40 млн. руб.

Вариант 3.

1-му филиалу в Михайловке выделить средства 3 млн. руб., 2-му филиалу в Урюпинске и 3-му филиалу в Котельниково выделить по 1 млн. руб.

В этом случае прибыль складывается следующим образом:

0,80+0+0,40+0,20=1,40 млн. руб.