Решенная задача на тему: конечный детерминированный автомат

Задание.

Построить конечный детерминированный автомат (определить множества S, X, Y, построить таблицу и диаграмму Мура), построить каноническую таблицу, канонические уравнения. Нарисовать схему устройства, используя логические элементы «И», «ИЛИ», «НЕ».

Во всех задачах $x(t), y(t) \in B$, $B = \{0,1\}, t = 1,2,3,...$

$$y(t) = x(t) \oplus \overline{x(t-1)}, \ t \ge 2, y(1) = 0.$$

Решение.

Входной и выходной алфавиты в задании $X = Y = B = \{0,1\}$. Опишем состояния. Поскольку выходное значение y(t) зависит как от текущего входного значения x(t), так и от входного значения на предыдущий момент времени x(t-1), то вводим состояния:

 S_1 - на предыдущем шаге поступил 0,

 S_2 - на предыдущем шаге поступила 1.

Заполняем таблицу входов и выходов автомата с формулой $y(t) = x(t) \oplus \overline{x(t-1)}$. В нижние треугольники записываем значения $y(t) = x(t) \oplus \overline{x(t-1)}$, где x(t) берем из верхней строки, а x(t-1) определяем из первого столбца (состояние S_1 или S_2).

В верхние треугольники занесем функцию переходов $\delta(s(t), x(t)) = s(t+1)$. В качестве s(t+1) выбираем S_1 или S_2 , ориентируясь на значения x(t) в верхней строке.

В верхней левой клетке $s(t+1) = S_1$, так как x(t) = 0. В правой верхней клетке $s(t+1) = S_2$, так как x(t) = 1 и т.д.

Заполняем клетки:

$$y(0,0) = 0 \oplus \overline{0} = 0 \oplus 1 = 1,$$

$$y(1,0) = 0 \oplus \bar{1} = 0 \oplus 0 = 0,$$

$$y(0,1) = 1 \oplus \overline{0} = 1 \oplus 1 = 0,$$

$$y(1,1) = 1 \oplus \overline{1} = 1 \oplus 0 = 1.$$

Получили в итоге таблицу

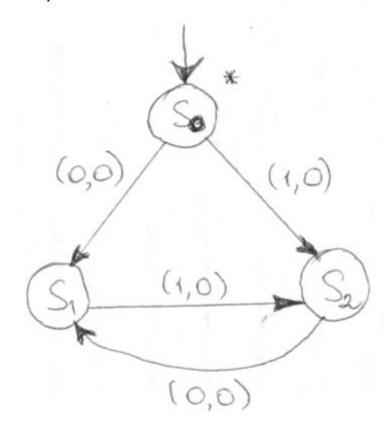
$S(t) \setminus x(t)$	0	1
S_1	S	S_2
	1	0
S_2^*	S_1	S_2
		1
	0	

Осталось выбрать начальное состояние, причем при $S(1) = s_0$ значение y(1) должно быть равно 0 независимо от входного значения x(t), то есть нижние треугольники должны содержать все 0. Этому условию не удовлетворяют текущие состояния S_1 и S_2 .

Введем в таблицу состояние $S_3 = S_0$, которое и будем считать начальным состоянием (помечаем *).

$S(t) \setminus x(t)$	0	1
S_1	Sı	<u>S</u> 2
	1	0
S_2	S_1	S_2 1
	0	
S_3^*	$\frac{S_1}{0}$	$\frac{S_2}{0}$

Построим для автомата диаграмму Мура.



Автомат является приведенным (минимальным), так как в нем нет эквивалентных состояний. Запишем каноническую таблицу:

S(t)	x(t)	y(t)	S(t+1)
S_1	0	1	S_1
S_1	1	0	S_2
S_2	0	0	S_1
S_2	1	1	S_2
S_3^*	0	0	S_1
S_3^*	1	0	S_2

Для выведения канонических уравнений закодируем состояния $S_3 \sim 00$ (начальное), $S_1 \sim 01$, $S_2 \sim 10$. Получаем таблицу:

s(t) $x(t)$	y(t)	s(t+1)
-------------	------	--------

01	0	1	01
01	1	0	10
10	0	0	01
10	1	1	10
00	0	0	01
00	1	0	10

Преобразуем ее к скалярному виду:

$s^{1}(t)$	$s^{2}(t)$	x(t)	y(t)	$s^{1}(t+1)$	$s^2(t+1)$
0	1	0	1	0	1
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	1	1	0
0	0	0	0	0	1
0	0	1	0	1	0

Доопределим строки в таблице:

$s^{1}(t)$	$s^{2}(t)$	x(t)	y(t)	$s^{1}(t+1)$	$s^2(t+1)$
0	1	0	1	0	1
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	1	1	0
0	0	0	0	0	1
0	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	0	0

Выражения для y(t) и $s^i(t+1)$ будем искать в виде СДНФ. Получаем:

$$\begin{cases} y(t) = \overline{s^{1}}(t) s^{2}(t) \overline{x}(t) \vee s^{1}(t) \overline{s^{2}}(t) x(t) \vee s^{1}(t) s^{2}(t) \overline{x}(t) \vee s^{1}(t) s^{2}(t) x(t), \\ s^{1}(t+1) = \overline{s^{1}}(t) s^{2}(t) x(t) \vee s^{1}(t) \overline{s^{2}}(t) x(t) \vee \overline{s^{1}}(t) \overline{s^{2}}(t) x(t), \\ s^{2}(t+1) = \overline{s^{1}}(t) s^{2}(t) \overline{x}(t) \vee s^{1}(t) \overline{s^{2}}(t) \overline{x}(t) \vee \overline{s^{1}}(t) \overline{s^{2}}(t) \overline{x}(t). \end{cases}$$

Упростим полученные уравнения:

$$y(t) = \overline{s^{1}}(t) s^{2}(t) \overline{x}(t) \vee s^{1}(t) \overline{s^{2}}(t) x(t) \vee s^{1}(t) s^{2}(t) \overline{x}(t) \vee s^{1}(t) s^{2}(t) x(t) =$$

$$= s^{2}(t) \overline{x}(t) \vee s^{1}(t) x(t),$$

$$s^{1}(t+1) = \overline{s^{1}}(t)s^{2}(t)x(t) \lor s^{1}(t)\overline{s^{2}}(t)x(t) \lor \overline{s^{1}}(t)\overline{s^{2}}(t)x(t) =$$

$$= \overline{s^{1}}(t)x(t) \lor \overline{s^{2}}(t)x(t) = (\overline{s^{1}}(t) \lor \overline{s^{2}}(t))x(t),$$

$$s^{2}(t+1) = \overline{s^{1}}(t) s^{2}(t) \overline{x}(t) \vee s^{1}(t) \overline{s^{2}}(t) \overline{x}(t) \vee \overline{s^{1}}(t) \overline{s^{2}}(t) \overline{x}(t) =$$

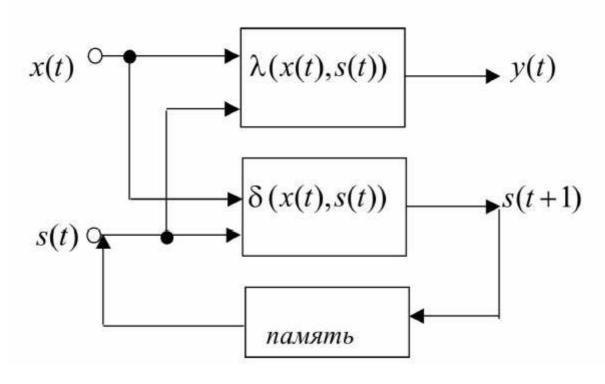
$$= \overline{s^{1}}(t) \overline{x}(t) \vee \overline{s^{2}}(t) \overline{x}(t) = (\overline{s^{1}}(t) \vee \overline{s^{2}}(t)) \overline{x}(t).$$

Канонические уравнения:

$$\begin{cases} y(t) = s^{2}(t)\overline{x}(t) \vee s^{1}(t)x(t), \\ s^{1}(t+1) = (\overline{s^{1}}(t) \vee \overline{s^{2}}(t))x(t), \\ s^{2}(t+1) = (\overline{s^{1}}(t) \vee \overline{s^{2}}(t))\overline{x}(t), \\ s^{1}(1) = s^{2}(1) = 0. \end{cases}$$

Нарисуем схему устройства, используя логические элементы «И», «ИЛИ», «НЕ».

В общем виде схема устройства выглядит следующим образом:



Здесь

$$\lambda(x(t),s(t)) = \lambda(x(t),s^1(t),s^2(t)) = s^2(t)\overline{x}(t) \vee s^1(t)x(t):$$

$$\delta(x(t),s(t)) = \delta(x(t),s^{1}(t),s^{2}(t)) = \begin{cases} \left(\overline{s^{1}}(t)\vee\overline{s^{2}}(t)\right)x(t) = s^{1}(t+1), \\ \left(\overline{s^{1}}(t)\vee\overline{s^{2}}(t)\right)\overline{x}(t) = s^{2}(t+1). \end{cases}$$

Схемы эти частей имеют вид:

