Решенная задача на тему: Машина Тьюринга

Задание.

Построить машину Тьюринга, которая вычисляет модуль разности любых двух натуральных чисел.

Решение.

Сконструируем машину Тьюринга для нахождения модуля разности любых двух натуральных чисел.

Внешний алфавит машины Тьюринга $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, \}$.

Внутренний алфавит машины Тьюринга $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_z\}$, где

 q_0 - начальное состояние машины Тьюринга;

 q_z - конечное состояние машины Тьюринга (останов.)

Пусть два заданных натуральных числа разделяются знаком -, пустые секции по-прежнему обозначаются , пусть слева на ленте от знака – расположено одно число, справа – другое. Идея решения заключается в следующем: от числа, расположенного справа, отнимаем единицу, действуя по правилам десятичной арифметики, затем продвигаемся влево к другому натуральному числу и уже от этого числа отнимаем единицу, действуя по правилам десятичной арифметики. После этого возвращаемся к правому числу и повторяем до тех пор, пока одно из чисел не будет исчерпано.

После этого последний раз сдвигаемся вправо (если исчерпано число, которое было расположено справа от знака -) или влево (если исчерпано число, которое было расположено слева от знака -), стираем знак – и останов.

Команды МТ:

- $q_0 \to q_0$ L (движение головки влево к концу числа, стоящего справа от знака -);
- $q_10 \to q_19$ L (найдена последняя цифра правого числа цифра 0 вместо 0 записываем в ячейку цифру 9 и MT остается в состоянии q_1 , головка движется дальше вправо)
- $q_1 1 \to q_2 0 {\rm L}$ (вместо 1 правого числа записываем цифру 0 и МТ переходит в состояние q_2)
- $q_1 2 \to q_2 1 {\rm L}$ (вместо 2 правого числа записываем цифру 1 и МТ переходит в состояние q_2)
- $q_1 3 \to q_2 2 L$ (вместо 3 правого числа записываем цифру 2 и МТ переходит в состояние q_2)
- $q_14 \to q_23$ L (вместо 4 правого числа записываем цифру 3 и МТ переходит в состояние q_2)

- $q_1 \to q_2 4 L$ (вместо 5 правого числа записываем цифру 4 и МТ переходит в состояние q_2)
- $q_16 \to q_25 {\rm L}$ (вместо 6 правого числа записываем цифру 5 и МТ переходит в состояние q_2)
- $q_17 \to q_26 {\rm L}$ (вместо 7 правого числа записываем цифру 6 и МТ переходит в состояние q_2)
- $q_1 8 \to q_2 7 {\rm L}$ (вместо 8 правого числа записываем цифру 7 и МТ переходит в состояние q_2)
- $q_1 9 \to q_2 8 \text{L}$ (вместо 9 правого числа записываем цифру 8 и МТ переходит в состояние q_2)
- $q_5 9 \rightarrow q_5 \quad \text{R} \text{ (стираем 9, и двигаемся влево)}$
- $q_5 \rightarrow q_5$ (стираем знак –)
- $q_5 \rightarrow q_z$ (MT останов.)
- $q_2 \longrightarrow q_3 {\rm L}$ (головка проходит знак -, который разделяет два заданных натуральных числа и подходит к последней цифре числа, записанного слева от знака -, МТ переходит в состояние q_3)
- $q_30 \to q_39 {\rm L}$ (найдена последняя цифра левого числа цифра 0 вместо 0 записываем в ячейку цифру 9 и MT остается в состоянии q_3 , головка движется дальше вправо)
- $q_{3}1 \to q_{4}0L$ (цифра 1 левого числа заменяется на 0, МТ переходит в состояние q_{4} и головка двигается влево)
- $q_3 2 \to q_4 1 R$ (цифра 2 левого числа заменяется на 1, МТ переходит в состояние q_4 и головка возвращается вправо к правому числу)
- $q_3 \to q_4 2R$ (цифра 3 левого числа заменяется на 2, МТ переходит в состояние q_4 и головка возвращается вправо к правому числу)
- $q_3 4 \to q_4 3R$ (цифра 4 левого числа заменяется на 3, МТ переходит в состояние q_4 и головка возвращается вправо к правому числу)
- $q_3 \to q_4 4R$ (цифра 5 левого числа заменяется на 4, МТ переходит в состояние q_4 и головка возвращается вправо к правому числу)
- $q_3 \to q_4 4R$ (цифра 5 левого числа заменяется на 4, МТ переходит в состояние q_4 и головка возвращается вправо к правому числу)
- $q_36 \to q_45R$ (цифра 6 левого числа заменяется на 5, МТ переходит в состояние q_4 и головка возвращается вправо к правому числу)
- $q_37 \to q_46R$ (цифра 7 левого числа заменяется на 6, МТ переходит в состояние q_4 и головка возвращается вправо к правому числу)
- $q_3 8 \to q_4 7 R$ (цифра 8 левого числа заменяется на 7, МТ переходит в состояние q_4 и головка возвращается вправо к правому числу)
- $q_3 9 \to q_4 8R$ (цифра 8 левого числа заменяется на 7, МТ переходит в состояние q_4 и головка возвращается вправо к правому числу)
- $q_4 o q_6 {
 m R}$ (левое число исчерпано, возвращаемся вправо, МТ переходит в состояние q_6)

Задача скачана с https://www.matburo.ru/ (много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

 $q_60 o q_6$ R (стираем 0, и двигаемся вправо) $q_6 o q_5$ (стираем знак –, МТ переходит в состояние q_5) $q_5 o q_z$ (**МТ останов.**)

Функциональная схема машины Тьюринга представлена в следующей таблице:

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
	q_0 L		q_5 R	q_5 R	q_5 R	q_z	q_6 R
0		q_1 9L	L	q_3 9L	R		q_6 R
1		q_20L	L	q_40L	R		
2		q_21L	L	q_41R	R		
3		q_2 2L	L	$q_4 2R$	R		
4		q_2 3L	L	q_43R	R		
5		q_2 4L	L	q_44R	R		
6		q_2 5L	L	q_45R	R		
7		q_2 6L	L	q_46R	R		
8		q_2 7L	L	q_47R	R		
9		q_2 8L	L	q_48R	R	q_5 L	
-		q_5 R	q_3 L		q_1 R	q_5	q_5

Примеры работы:

1) MT вычисляет |2 – 1|

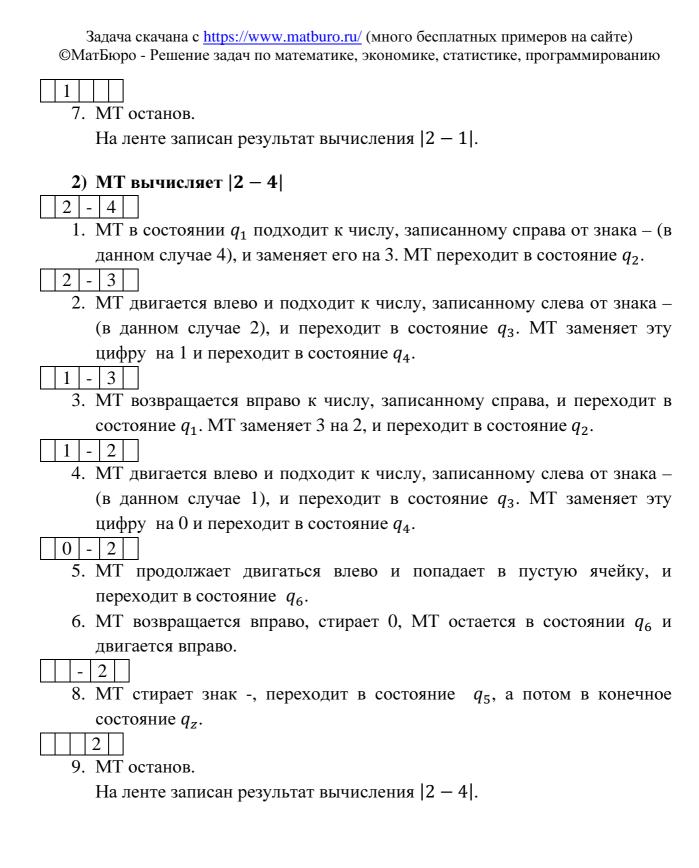
2 - 1

1. МТ в состоянии q_1 подходит к числу, записанному справа от знака – (в данном случае 1), и заменяет его на 0. МТ переходит в состояние q_2 .

2 - 0

2. МТ двигается влево и подходит к числу, записанному слева от знака — (в данном случае 2), и переходит в состояние q_3 . МТ заменяет эту цифру на 1 и переходит в состояние q_4 .

1 - 0


3. МТ возвращается вправо к числу, записанному справа, и переходит в состояние q_1 . Справа число исчерпано, но стоит цифра 0, которая заменяется на 9. МТ остается в состоянии q_1 .

1 - 9

- 4. МТ возвращается влево и попадает в ячейку, где стоит знак -. МТ переходит в состояние q_5 и возвращается вправо.
- 5. МТ стирает цифру 9, остается в состоянии q_5 . МТ двигается влево.

1 -

6. МТ стирает знак -, переходит в конечное состоянии q_z .

