Ранг и базис системы векторов. Разложение по базису Пример решения задачи по алгебре

Задача. Найти ранг и базис системы векторов, перейти к новому базису. Записать разложения векторов по найденным базисам.

$$A_1 = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}, A_2 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}, A_4 = \begin{pmatrix} 10 \\ 20 \\ 12 \end{pmatrix}, A_5 = \begin{pmatrix} 8 \\ 12 \\ 8 \end{pmatrix}.$$

Решение. Так как размерность векторов 3, ранг не может быть больше 3. Рассмотрим определитель из первых трех векторов:

$$\Delta(A_1 A_2 A_3) = \begin{vmatrix} 3 & 2 & 1 \\ 2 & 3 & 4 \\ 4 & 1 & 2 \end{vmatrix} = 3 \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix} - 2 \begin{vmatrix} 2 & 4 \\ 4 & 2 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} =$$

$$= 3(6-4) - 2(4-16) + 1(2-12) = 6 + 24 - 10 = 20 \neq 0.$$

Значит, вектора $\{A_1A_2A_3\}$ образуют базис. Ранг системы векторов равен 3.

Запишем разложение векторов по найденному базису. Составим из векторов матрицу (таблицу):

3	2	1	10	8
2	3	4	20	12
4	1	2	12	8

Получим в первых трех столбцах единичную матрицу, тогда в последних двух будут коэффициенты разложения векторов A_4 и A_5 по базису $\left\{A_1A_2A_3\right\}$. Преобразования проводим по методу Жордана-Гаусса.

3	2	1	10	8
2	3	4	20	12
4	1	2	12	8
3	2	1	10	8
·10	-5	0	-20	-20
-2	-3	0	-8	-8
3	2	1	10	8
2	1	0	4	4
2	3	0	8	8
-1	0	1	2	0

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_ag.php?p1=aglin

©МатБюро - Решение задач по математике, экономике, статистике

2	1	0	4	4
-4	0	0	-4	-4
-1	0	1	2	0
2	1	0	4	4
1	0	0	1	1
0	0	1	3	1
0	1	0	2	2
1	0	0	1	1

Получили: $A_4 = \{3; 2; 1\}$, $A_5 = \{1; 2; 1\}$ - координаты в базисе $\{A_1A_2A_3\}$.

Найдем другой базис. Рассмотрим систему векторов $A_5A_1A_2$.

$$\Delta(A_1 A_2 A_5) = \begin{vmatrix} 3 & 2 & 8 \\ 2 & 3 & 12 \\ 4 & 1 & 8 \end{vmatrix} = 3 \begin{vmatrix} 3 & 12 \\ 1 & 8 \end{vmatrix} - 2 \begin{vmatrix} 2 & 12 \\ 4 & 8 \end{vmatrix} + 8 \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} =$$

$$=3(24-12)-2(16-48)+8(2-12)=36+64-80=20\neq 0.$$

Значит, вектора $\left\{ A_{1}A_{2}A_{5}\right\}$ образуют базис.

Аналогично найдем координаты векторов A_3 , A_4 в данном базисе. Составляем таблицу и преобразовываем.

3	2	8	1	10
2	3	12	4	20
4	1	8	2	12
-5	0	-8	-3	-14
-10	0	-12	-3 -2 2	-16
4	1	8	2	12
5	0	8	3	14
5	0	6	1	8
4	1	8	2	12
0	0	2	2	6
5	0	6	1	8
4	1	8	2	12
0	0	1	1	3
5	0	6	1	8
4	1	8	2	12
0	0	1	1	3
5	0	0	-5	-10
4	1	0	-6	-12
			_	_

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_ag.php?p1=aglin ©МатБюро - Решение задач по математике, экономике, статистике

0	0	1	1	3
1	0	0	-1	-2
4	1	0	-6	-12
0	0	1	1	3
1	0	0	-1	-2
0	1	0	-2	-4

Получили $A_3=\left\{1;-2;-1\right\},\ A_4=\left\{3;-4;-2\right\}$ - разложение в базисе $\left\{A_1A_2A_5\right\}$.