Решение задачи целочисленного программирования методом Гомори.

Решение двойственной задачи

Задание.

- 1. Найти целочисленное решение задачи линейного программирования.
- 2.Составить двойственную задачу и решить её без условия целочисленности.
- 3. По теоремам двойственности проверить связь нецелочисленных решений прямой и двойственной задачи.

$$Z(x) = 3x_1 - x_2 - 5x_3 \rightarrow \max$$

$$\begin{cases} 5x_1 + x_2 + 4x_3 = 7 \\ 3x_1 + 2x_3 \le 4 \\ x_1 - 3x_3 \le 3 \\ x_i \ge 0, x_i - \text{целые} \end{cases}$$

Решение.

Необходимо привести задачу к каноническому виду, для этого в первое ничего не вводим, так как переменная x_2 будет базисной. Во второе и третье неравенство вводим дополнительные переменные x_4 и x_5 со знаком плюс, так как знак ограничения \leq . В результате математическая модель задачи примет вид:

$$Z(x) = 3x_1 - x_2 - 5x_3 \rightarrow \max$$

$$\begin{cases} 5x_1 + x_2 + 4x_3 = 7 \\ 3x_1 + 2x_3 + x_4 = 4 \end{cases}$$

$$\begin{cases} x_1 - 3x_3 + x_5 = 3 \\ x_2 \ge 0, x_3 - \text{целые} \end{cases}$$

1. Для решения целочисленного решения применим метод Гомори. По методу не отличается от обычного первый этап решения расчёта по симплексному методу. Если среди значений переменных в оптимальном дробные, то составляется дополнительное плане есть ограничение, дробную часть решения, но оставляющее в силе все прочие отсекающее Это удовлетворять оптимальный план. условия, которым должен дополнительное ограничение присоединяется К исходным ограничениям задачи, и вновь применяется процедура симплексного метода.

Таблица 1

Задача скачана с сайта www.MatBuro.ru ©МатБюро - Решение задач линейного программирования, ЭММ и т.п.

	A	В	C	D	E	F	G	H	I	J
1				3	-1	-5	.0	0		
2	Базис	C6	В	x1	x2	хЗ	x4	x5	Отношения	Козфф.
3	x2	-1	7	5	1	4	0	0	1,4	1,666667
4	х4	0	4	3	0	2	1	0	1,33333333	
5	х5	0	3	1	0	-3	0	1	3	0,333333
6	1.0	Z	0	-3	1	5	0	0		

Так как задача на нахождение максимального значения целевой функции, то в индексной строке выбираем наибольшую по модулю отрицательную оценку. Но так как она у нас единственная, выбирать не приходится. Выделяем столбец с переменной x_1 . Далее находим оценочные отношения, делением столбца С на столбец D, из которых выбираем наименьшее – это вторая строка, выделяем её. Из базиса выводим переменную x_4 , при этом в базис вводим переменную x_1 . Элементы второй строки делим на 3. В последний столбец запишем пересчитывающие коэффициенты: $\frac{5}{3}$ = 1,666667 и $\frac{1}{3}$ = 0,33333, которые необходимы при пересчёте всех невыделенных элементов. Например, для первой строки первого столбца, имеем: $7-4\cdot1,6666667=0,33333$ и так все элементы. В результате перейдём к таблице 2.

Таблица 2

	В	С	D	E	F	G	Н		J
1			3	-1	-5	0	0		
2 Базис	C6	В	x1	х2	х3	x4	x5	Отношения	Коэфф.
10 x2	-1	1/3	0	1	2/3	-1 2/3	0		
11 x1	3	1 1/3	1	0	2/3	1/3	0		
12 x5	0	1 2/3	0	0	-3 2/3	- 1/3	1		
13	Ζ	3 2/3	0	0	6 1/3	2 2/3	0		

В индексной строке все элементы положительные или больше нуля, следовательно, план оптимален: $Z\left(1\frac{1}{3};\frac{1}{3};0\right)=3\frac{2}{3}$. Но полученное решение не есть целочисленным, поэтому с этого момента будем применять метод Гомори.

В полученном оптимальном плане присутствуют дробные числа. По третьему уравнению с переменной x_5 , получившей нецелочисленное значение в оптимальном плане с наибольшей дробной частью $\frac{2}{3}$, составляем дополнительное ограничение:

$$q_3 - q_{31} \cdot x_1 - q_{32} \cdot x_2 - q_{33} \cdot x_3 - q_{34} \cdot x_4 - q_{35} \cdot x_5 \le 0.$$

©МатБюро - Решение задач линейного программирования, ЭММ и т.п.

Дополнительное ограничение примет вид: $\frac{2}{3} - \frac{1}{3} x_3 - \frac{2}{3} x_4 \le 0$. Преобразуем полученное неравенство в уравнение: $\frac{2}{3} - \frac{1}{3} x_3 - \frac{2}{3} x_4 + x_6 = 0$.

Добавим это ограничение в симплекс – таблицу. Так как двойственный симплекс – метод используется для поиска минимума целевой функции, делаем преобразование Z(x) = -Z(X).

Таблица 3

9	Базис	C6	В	x1	х2	х3	x4	х5	х6	
10	x2	-1	1/3	0	1	2/3	-1 2/3	0	0	
11	x1	3	1 1/3	1	0	2/3	1/3	0	0	
12	x5	0	1 2/3	0	0	-3 2/3	- 1/3	1	0	
13	х6	0	- 2/3	0	0	- 1/3	- 2/3	0	1	
14		Z(XD)	-3 2/3	0	0	-6 1/3	-2 2/3	0	0	

На пересечении ведущих строки и столбца находится разрешающий элемент, который равен $-\frac{2}{3}$.

Таблица 4

	Α	В	C	D	E	F	G	Н	1	J
7										
8										
9	Базис	C6	В	x1	x2	x3	×4	х5	х6	
10	x2	-1	1/3	0	1	2/3	-1 2/3	0	0	
11	х1	3	1 1/3	1	0	2/3	1/3	0	0	
12	x5	0	1 2/3	0	0	-3 2/3	- 1/3	1	0	
13	х6	0	- 2/3	0	0	- 1/3	- 2/3	0	1	
14		Z	-3 2/3	0	0	-6 1/3	-2 2/3	0	0	
15			0	•		19	4			

Выполним преобразование и перейдём к таблице 5.

Таблица 5

9	Базис	C6	В	x1	х2	х3	x4	x5	х6					
10	x2	-1	2	0	1	1 1/2	0	0	-2 1/2					
11	x1	3	1	1	0	1/2	0	0	1/2					
12	x5	0	2	0	0	-3 1/2	0	1	- 1/2					
13	x4	0	1	0	0	1/2	1	0	-1 1/2					
14		Z	-1	0	0	-5	0	0	-4					

Решение получилось целочисленным. Нет необходимости дальше применять метод Гомори.

Оптимальный целочисленный план можно записать так:

$$x_2 = 2$$

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач линейного программирования, ЭММ и т.п.

$$x_1 = 1$$

 $x_5 = 2$
 $x_4 = 1$
 $F(X) = 1$.

Следовательно, видим, что решение нецелочисленное, полученное уже на второй симплекс таблице отличается от решения полученное методом Гомори. Целевая функция делается хуже за счёт дополнительных условий, которые просто необходимы, чтобы получить целочисленное решение.

2. У нас есть прямая задача

$$Z(x) = 3x_1 - x_2 - 5x_3 \to \max$$

$$\begin{cases} 5x_1 + x_2 + 4x_3 = 7 \\ 3x_1 + 2x_3 \le 4 \\ x_1 - 3x_3 \le 3 \\ x_i \ge 0, x_i - \text{целые} \end{cases}$$

Составим к ней двойственную:

$$F = 7y_1 + 4y_2 + 3y_3 \rightarrow \min$$

$$\begin{cases} 5y_1 + 3y_2 + y_3 \ge 3 \\ y_1 \ge -1 \\ 4y_1 + 2y_2 - 3y_3 \ge -5 \end{cases}$$

$$y_{1,2,3} \ge 0.$$

$$F = 7y_1 + 4y_2 + 3y_3 \rightarrow \min$$

$$\begin{cases} 5y_1 + 3y_2 + y_3 \ge 3 \\ -y_1 \le 1 \\ -4y_1 - 2y_2 + 3y_3 \le 5 \end{cases}$$

$$y_{1,2,3} \ge 0.$$

В первое неравенство вводим дополнительную переменную y_4 со знаком минус, а также искусственный базис z_1 . Во второе и третье неравенство вводим дополнительные переменные со знаком плюс y_5, y_6 . Тогда математическая модель в канонической форме примет вид:

$$F = 7y_1 + 4y_2 + 3y_3 \rightarrow \min$$

$$\begin{cases} 5y_1 + 3y_2 + y_3 - y_4 + z_1 = 3 \\ -y_1 + y_5 = 1 \\ -4y_1 - 2y_2 + 3y_3 + y_6 = 5 \end{cases}$$

$$y_{1,2,3,4,5,6} \ge 0$$

Дальнейшее решение представим в виде симплекс – таблиц.

Таблица 1

Задача скачана с сайта www.MatBuro.ru ©МатБюро - Решение задач линейного программирования, ЭММ и т.п.

	Α	В	С	D	Е	F	G	Н		J	K	L
1				7	4	3	0	0	0	1		
2	Базис	C6	В	y1	у2	у3	у4	у5	у6	z1	Отношения	Коэфф.
3	z1	1	თ	5	З	1	-1	0	0	1	8,0	-
4	y5	0	1	-1	0	0	0	1	0	0	-	-0,2
5	у6	0	5	-4	-2	3	0	0	1	0	-	-0,8
6		F	0	-7	-4	-3	0	0	0	0		
7			3	5	3	1	-1	0	0	0		

Так как задача на нахождение минимального значения функции, то выбираем в индексной строке положительную оценку. Это столбец с переменной y_1 . Находим оценочные отношения делением столбца С на столбец D. Оно у нас единственное – 0,6 в первой строке, которую выделяем. Элементы первой строки делим на 5. Из базиса выводим искусственный базис z_1 , при этом в базис вводим переменную y_1 . В последний столбец запишем пересчитывающие коэффициенты, которые необходимы будут при пересчёте таблицы: $\frac{-1}{5} = -0.2$, $-\frac{4}{5} = -0.8$. Все невыделенные элементы пересчитываем по методу Гаусса. Например, для второй строки, первого столбца: $1-3\cdot(-0.2)=1.6$ и так все элементы. Столбец с искусственным базисом убираем и в дальнейших расчётах он больше не участвует, а также подсчёт в индексной строке будет вестись уже в одной строке, а не в двух. Перейдём к таблице 2.

Таблица 2.

	Α	В	С	D	E	F	G	Н	I	J	K	L
1				7	4	3	0	0	0	1		
2	Базис	C6	В	γ1	γ2	γ3	γ4	γ5	γ6	Убираем	Отношения	Козфф.
10	y1	7	0,6	1	0,6	0,2	-0,2	0	0		1	-
11	у5	0	1,6	0	0,6	0,2	-0,2	1	0		2,6666667	1
12	у6	0	7,4	0	0,4	3,8	-0,8	0	1		18,5	0,666667
13		F	4.2	0	0.2	-1.6	-1.4	0	0			

Не смотря на то, что из базиса вывели искусственный базис, в индексной строке присутствует положительная оценка, значит, план не оптимален. Выделяем столбец с переменной y_2 . Среди найденных оценочных отношений выбираем первую строку, для которой оно равно 1. Выделяем первую строку. Элементы первой строки делим на 0,6. Из базиса выводим переменную y_1 , при этом в базис вводим переменную y_2 . Все не выделенные элементы пересчитываем, получим таблицу 3.

Таблица 3.

	Α	В	С	D	Е	F	G	Н	- 1	J	K	L
1				7	4	3	0	0	0	1		
2	Базис	Сб	В	γ1	γ2	γ3	γ4	γ5	γ6	Убираем	Отношения	Коэфф.
17	y2	4	1	1,666667	1	0,333333	-0,333333	0	0			
18	y5	0	1	-1	0	0	0	1	0			
19	у6	0	7	-0,66667	0	3,666667	-0,66667	0	1			
20		F	4	-0,333333	0	-1,66667	-1,333333	0	0			

Получен оптимальный план, при котором целевая функция достигает своего минимального значения.

$$F_{\min}(0,1,0) = 4$$
.

3. По теоремам двойственности проверим связь нецелочисленных решений прямой и двойственной задачи.

Для прямой задачи нецелочисленное решение из таблицы 2 (до применения метода Гомори): $Z_{\text{max}}\left(1\frac{1}{3};\frac{1}{3};0\right)=3\frac{2}{3}$.

Для двойственной задачи нецелочисленным методом (но получили кстати целочисленное решение) решение следующее: $F_{\min}(0,1,0)=4$.

Применим первую теорему двойственности, которая заключается в том, чтобы $Z_{\max} = F_{\min}$. Но в нашем случае, который является достаточно редким, теорема не выполняется, так как значения целевых функций не совпадают.

Применим вторую теорему двойственности.

 $x_1 = \frac{4}{3}; x_2 = \frac{1}{3}; x_3 = 0$ решение для прямой задачи подставим в математическую модель прямой задачи:

$$\begin{cases} 5 \cdot \frac{4}{3} + \frac{1}{3} + 4 \cdot 0 = 7 \\ 3 \cdot \frac{4}{3} + 2 \cdot \frac{1}{3} = 4,66 \le 4 - \text{условие не выполняется} \\ \frac{4}{3} - 3 \cdot \frac{1}{3} = 0,333 \le 3 \\ x_1 = \frac{4}{3} \ge 0 \\ x_2 = \frac{1}{3} \ge 0 \end{cases}$$

Для двойственной задачи: $y_1 = 0, y_2 = 1, y_3 = 0$.

$$\begin{cases} 5 \cdot 0 + 3 \cdot 1 + 0 = 3 \ge 3 \\ 0 \ge -1 \\ 4 \cdot 0 + 2 \cdot 1 + 3 \cdot 0 = 2 \ge -5 \end{cases}$$
$$y_1 = y_2 = 0 \ge 0$$
$$y_2 = 1 \ge 0$$

Для двойственной задачи условия выполняются.